Failure of Long-Term Memory Formation in Juvenile Snails Is Determined by Acetylation Status of Histone H3 and Can Be Improved by NaB Treatment

نویسندگان

  • Alexandra B. Danilova
  • Larisa N. Grinkevich
چکیده

BACKGROUND Animals' capacities for different forms of learning do not mature simultaneously during ontogenesis but the molecular mechanisms behind the delayed development of specific types of memory are not fully understood. Mollusks are considered to be among the best models to study memory formation at the molecular level. Chromatin remodeling in developmental processes, as well as in long-term memory formation, was recently shown to play a major role. Histone acetylation is a key process in the chromatin remodeling and is regulated through the signaling cascades, for example MAPK/ERK. Previously, we found that MAPK/ERK is a key pathway in the formation of the food aversion reflex in Helix. Pretreatment with upstream ERK kinase inhibitor PD98059 prevented food avoidance learning in adult Helix. In contrast to adult snails, juveniles possess immature plasticity mechanisms of the avoidance reflex until the age of 2-3 months while the MAPK/ERK cascade is not activated after aversive learning. In the present study, we focused on the potential MAPK/ERK target--histone H3. METHODOLOGY/PRINCIPAL FINDINGS Here we found that a significant increase in histone H3 acetylation occurs in adult animals after learning, whereas no corresponding increase was observed in juveniles. The acetylation of histone H3 is regulated by ERK kinase, since the upstream ERK kinase inhibitor PD98059 prevented the increase of histone H3 acetylation upon learning. We found that the injection of histone deacetylase inhibitor sodium butyrate (NaB) prior to training led to induction in histone H3 acetylation and significantly ameliorated long-term memory formation in juvenile snails. CONCLUSIONS/SIGNIFICANCE Thus, MAPK/ERK-dependent histone H3 acetylation plays an essential role in the formation of food aversion in Helix. Dysfunction of the MAPK/ERK dependent histone H3 acetylation might determine the deficiency of avoidance behavior and long-term plasticity in juvenile animals. Stimulation of histone H3 acetylation in juvenile animals by NaB promoted avoidance plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histone acetylation is recruited in consolidation as a molecular feature of stronger memories.

Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone acetylation is involved in consolidation in invertebra...

متن کامل

DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity.

A clear understanding is developing concerning the importance of epigenetic-related molecular mechanisms in transcription-dependent long-term memory formation. Chromatin modification, in particular histone acetylation, is associated with transcriptional activation, and acetylation of histone 3 (H3) occurs in Area CA1 of the hippocampus following contextual fear conditioning training. Conversely...

متن کامل

Acetylation-Mediated Suppression of Transcription-Independent Memory: Bidirectional Modulation of Memory by Acetylation

Learning induced changes in protein acetylation, mediated by histone acetyl transferases (HATs), and the antagonistic histone deacetylases (HDACs) play a critical role in memory formation. The status of histone acetylation affects the interaction between the transcription-complex and DNA and thus regulates transcription-dependent processes required for long-term memory (LTM). While the majority...

متن کامل

Histone methylation regulates memory formation.

It has been established that regulation of chromatin structure through post-translational modification of histone proteins, primarily histone H3 phosphorylation and acetylation, is an important early step in the induction of synaptic plasticity and formation of long-term memory. In this study, we investigated the contribution of another histone modification, histone methylation, to memory forma...

متن کامل

HDAC Inhibitors and Heat Shock Proteins (Hsps)

Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012